
Variational Auto-Encoders

Stéphane d’Ascoli



Roadmap
1. A reminder on auto-encoders

a. Basics
b. Denoising and sparse encoders
c. Why do we need VAEs ?

2. Understanding variational auto-encoders
a. Key ingredients
b. The reparametrization trich
c. The underlying math

3. Applications and perspectives
a. Disentanglement
b. Adding a discrete condition
c. Applications
d. Comparison with GANs

4. Do it yourself in PyTorch
a. Build a basic denoising encoder
b. Build a conditional VAE



Auto-Encoders



Basics



Denoising and Sparse Auto-Encoders
Denoising :

Sparse : enforces specialization of 
hidden units

Contractive : enforces that close inputs 
give close outputs



Why do we need VAE ?
VAE’s are used as generative models : sample a latent vector, decode and you 
have a new sample

Q : Why can’t we use normal auto-encoders ?
A : If we choose an arbitrary latent vector, we aren’t close to any points in 
the training set and the reconstruction is garbage !

Q : How can we avoid this ?
A : Compactify the latent space !

Q : How can we do this ?
A : Two ingredients :
1. Encode into balls rather than 
points
2. Bring the balls closer together



Variational 
Auto-Encoders



Key Ingredients
Generative models : unsupervised learning, aim to learn the distribution 
underlying the input data

VAEs : Map the complicated data distribution to a simpler distribution 
(encoder) we can sample from (Kingma & Welling 2014) to generate images 
(decoder)



Q : Why encode into distributions rather than deterministic values ?

A1 : This creates balls in latent space
A2 : This ensures that close points in latent space lead to the same 
reconstruction. This gives “meaning” to the latent space.

First Ingredient : Encode into Distributions



Second Ingredient : impose structure
Q : How can I bring the balls together to compactify latent space ?
A : Make sure that Q(z|x) for different x’s are close together ! 



Second Ingredient : impose structure
Q : How do we keep the balls 
close together ? 
A : By adding springs the 
balls which pull them towards 
the center

Q : How ?
A : KL divergence with N(0,1) 
prior !



The Reparametrization Trick
Q : How can we backpropagate when one of the nodes is non-deterministic ?
A : Put the random process outside the network !



The Underlying Information Theory



The Underlying Information Theory



The Underlying Information Theory



The Underlying Information Theory



The Underlying Information Theory



VAEs in Practice



Disentanglement : Beta-Vae
We saw that the objective function is made of a reconstruction and a 
regularization part.

By adding a tuning parameter we can control the tradeoff. 

If we increase beta:
- The dimensions of the latent representation are more disentangled
- But the reconstruction loss is less good



Generating Conditionally : CVAEs
Add a one-hot encoded vector to the latent space and 
use it as categorical variable, hoping that it will 
encode discrete features in data (digits in MNIST)

Q : The usual reparametrization trick doesn’t work 
here, because we need to sample discrete values from 
the distribution ! What can we do ?
A : Gumbel-Max trick

Q : How do I balance the regularization terms for the 
continuous and discrete parts ?
A : Control the KL divergences independently



Applications
Image generation : Dupont et al. 2018

Text generation : Bowman et al. 2016

 



Comparison with GANS

VAE GAN

Easy metric : reconstruction loss Metric is hard to interpret

Interpretable and disentangled latent space Low interpretability

Easy to train Tedious hyperparameter searching

Noisy generation Clean generation



Towards a Mix of the Two ?



Do It Yourself
In Pytorch



Auto-Encoder

2. DIY: implement a denoising convolutional auto-encoder for MNIST

1. Example: a simple fully-connected auto-encoder



Variational Auto-Encoder
1. Example: a simple VAE 

2. DIY: implement a conditional VAE for MNIST



Questions


