Variational Auto-Encoders

Stéphane d’Ascoli
Roadmap

1. A reminder on auto-encoders
 a. Basics
 b. Denoising and sparse encoders
 c. Why do we need VAEs?

2. Understanding variational auto-encoders
 a. Key ingredients
 b. The reparametrization trick
 c. The underlying math

3. Applications and perspectives
 a. Disentanglement
 b. Adding a discrete condition
 c. Applications
 d. Comparison with GANs

4. Do it yourself in PyTorch
 a. Build a basic denoising encoder
 b. Build a conditional VAE
Auto-Encoders
Basics

\[\mathcal{L}(x) = \frac{1}{2} (x - \theta(\phi(x)))^2 \]
Denoising and Sparse Auto-Encoders

Denoising:

Sparse: enforces specialization of hidden units

$$\mathcal{L} (x, \hat{x}) + \lambda \sum_i |a_i^{(h)}|$$

Contractive: enforces that close inputs give close outputs

$$\mathcal{L} (x, \hat{x}) + \lambda \sum_i \left\| \nabla_x a_i^{(h)} (x) \right\|^2$$
Why do we need VAE?

VAE’s are used as generative models: sample a latent vector, decode and you have a new sample.

Q: Why can’t we use normal auto-encoders?
A: If we choose an arbitrary latent vector, we aren’t close to any points in the training set and the reconstruction is garbage!

Q: How can we avoid this?
A: Compactify the latent space!

Q: How can we do this?
A: Two ingredients:
1. Encode into balls rather than points
2. Bring the balls closer together
Variational Auto-Encoders
Key Ingredients

Generative models: unsupervised learning, aim to learn the distribution underlying the input data

VAEs: Map the complicated data distribution to a simpler distribution (encoder) we can sample from (Kingma & Welling 2014) to generate images (decoder)
First Ingredient: Encode into Distributions

Q: Why encode into distributions rather than deterministic values?

A1: This creates balls in latent space
A2: This ensures that close points in latent space lead to the same reconstruction. This gives “meaning” to the latent space.
Second Ingredient : impose structure

Q: How can I bring the balls together to compactify latent space?
A: Make sure that \(Q(z|x) \) for different \(x \)’s are close together!
SECOND INGREDIENT: IMPOSE STRUCTURE

Q: How do we keep the balls close together?
A: By adding springs the balls which pull them towards the center.

Q: How?
A: KL divergence with N(0,1) prior!

\[\mathcal{L}_{KL} = \mathbb{E}_{x \sim \text{dataset}} \left[D_{KL} \{ Q_\phi(z|x) || p(z) \} \right], p \sim \mathcal{N}(0,1) \]
The Reparametrization Trick

Q: How can we backpropagate when one of the nodes is non-deterministic?
A: Put the random process outside the network!
The Underlying Information Theory

How can we make a latent variable model?

Choose a nice simple latent distribution $P(z)$, for example $P(z) \sim \mathcal{N}(0, I_d)$, try to find its mapping to real space, $P(x|z)$, by maximizing the likelihood of observing the dataset under this generative process:

$$
\mathcal{L} = \mathbb{E}_{x \sim \mathcal{D}} \log P(x) = \mathbb{E}_{x \sim \mathcal{D}} \log \int_z P(x|z)P(z)dz
$$

To do this, we could parametrize $P(x|z)$ by a neural network and perform gradient ascent on \mathcal{L}. Problem: we can’t calculate the integral in \mathcal{L} for arbitrary $P(x|z)$! We could estimate it with sampling but that would be very inaccurate in high dimension.
The Underlying Information Theory

To do this, we could parametrize $P(x|z)$ by a neural network and perform gradient ascent on \mathcal{L}. Problem: we can’t calculate the integral in \mathcal{L} for arbitrary $P(x|z)$! We could estimate it with sampling but that would be very inaccurate in high dimension.

The idea is to circumvent this by introduce another distribution $Q(z)$ and exploit the following lower bound, valid for any $Q(z)$:

$$\mathcal{L} \geq \mathbb{E}_{x \sim D} [\mathbb{E}_{z \sim Q} \log P(x|z) - \beta \mathcal{D}_{KL}(Q(z)||P(z))] = \text{ELBO}$$

This time, we have two things to optimize simultaneously: $Q(z|x)$ (the encoder) and $P(x|z)$ (the decoder)! Why is this nicer? Because both terms that appear are tractable
The Underlying Information Theory

\[\mathcal{L} \geq \mathbb{E}_{x \sim D} \left[\mathbb{E}_{z \sim Q} \log P(x|z) - \beta D_{KL}(Q(z)||P(z)) \right] = \text{ELBO} \]

- The first term is called the reconstruction loss. Wait, this is silly because we have an intractable integral over \(z \) again! Yes, but this time we have freedom to make \(Q(z) \) dependent on \(x \). Whereas before we had to integrate over the whole latent space, here we only have to integrate over a small ball containing values likely to reconstruct \(x \):

\[Q(z|x) \sim \mathcal{N}(\mu(x), \Sigma(x)) \tag{1} \]

If the ball is small enough we can estimate the average just by sampling one point!
The Underlying Information Theory

\[\mathcal{L} \geq \mathbb{E}_{x \sim \mathcal{D}} \left[\mathbb{E}_{z \sim Q} \log P(x|z) - \beta D_{KL}(Q(z)||P(z)) \right] = \text{ELBO} \]

- The second term is called the regularization term. Since both \(P(z) \) and \(Q(z|x) \) are tractable we have an easy analytic formula:

\[
\mathcal{D}[\mathcal{N}(\mu(x), \Sigma(x))||\mathcal{N}(0, I_d)] = \frac{1}{2} \left(\text{tr}(\Sigma(x)) + (\mu(x))^\top(\mu(x)) - d - \log \det(\Sigma(x)) \right)
\]

(2)
The Underlying Information Theory

Proof of lower bound:

\[D_{KL}(Q(z)\|P(z|x)) = \sum_z Q(z) \log \frac{Q(z)}{P(z|x)} \]

\[= \log P(x) + \sum_z Q(z) \log \frac{Q(z)}{P(z)} - \sum_z Q(z) \log P(x|z) \]

\[= \log P(x) + D_{KL}(Q(z)\|P(z)) - \mathbb{E}_{z \sim Q} \log P(x|z) \]

\[\text{ELBO} \]

\[\mathbb{E}_{x \sim D} \log P(x) = \mathbb{E}_{x \sim D} [D_{KL}(Q(z)\|P(z|x)) + \text{ELBO}] \]

\[\geq \text{ELBO} \]
VAEs in Practice
Disentanglement : Beta-Vae

We saw that the objective function is made of a reconstruction and a regularization part.

$$\mathcal{L} = \mathbb{E}_{z \sim Q} \log P(x|z) - \beta D_{KL}(Q(z|x) || P(z))$$

By adding a tuning parameter we can control the tradeoff.

If we increase beta:
- The dimensions of the latent representation are more disentangled
- But the reconstruction loss is less good
Generating Conditionally: CVAEs

Add a one-hot encoded vector to the latent space and use it as categorical variable, hoping that it will encode discrete features in data (digits in MNIST)

Q: The usual reparametrization trick doesn’t work here, because we need to sample discrete values from the distribution! What can we do?
A: Gumbel-Max trick

Q: How do I balance the regularization terms for the continuous and discrete parts?
A: Control the KL divergences independently

\[\mathcal{L}(\theta, \phi) = \mathbb{E}_{q_{\phi}(z, c|x)}[\log p_{\theta}(x|z, c)] - \gamma D_{KL}(q_{\phi}(z|x) \| p(z)) - C_z - \gamma D_{KL}(q_{\phi}(c|x) \| p(c)) - C_c \]
Applications

Image generation: Dupont et al. 2018

Comparison with GANS

<table>
<thead>
<tr>
<th>VAE</th>
<th>GAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy metric: reconstruction loss</td>
<td>Metric is hard to interpret</td>
</tr>
<tr>
<td>Interpretable and disentangled latent space</td>
<td>Low interpretability</td>
</tr>
<tr>
<td>Easy to train</td>
<td>Tedious hyperparameter searching</td>
</tr>
<tr>
<td>Noisy generation</td>
<td>Clean generation</td>
</tr>
</tbody>
</table>
Towards a Mix of the Two?

Prominent attributes: White, Male, Curly Hair, Frowning, Eyes Open, Pointy Nose, Flash, Posed Photo, Eyeglasses, Narrow Eyes, Teeth Not Visible, Senior, Receding Hairline.
Do It Yourself In Pytorch
Auto-Encoder

1. **Example:** a *simple fully-connected* auto-encoder

```python
loss_fn = torch.nn.MSELoss()

def train_model(model, loss_fn, data_loader=None, epochs=1, optimizer=None):
    model.train()
    for epoch in range(epochs):
        for batch_idx, (data, _) in enumerate(data_loader):
            data = data.view([-1, 784])
            optimizer.zero_grad()
            output = model(data)
            loss = loss_fn(output, data)
            loss.backward()
            optimizer.step()
            if batch_idx % 50 == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]
                      Loss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(data_loader.dataset),
                    100. * batch_idx / len(data_loader), loss.data.item()))
```

2. **DIY:** implement a *denoising convolutional* auto-encoder for MNIST

```python
class AutoEncoder(nn.Module):
    def __init__(self, input_dim, encoding_dim):
        super(AutoEncoder, self).__init__()
        self.encoder = nn.Linear(input_dim, encoding_dim)
        self.decoder = nn.Linear(encoding_dim, input_dim)

    def forward(self, x):
        encoded = F.relu(self.encoder(x))
        decoded = self.decoder(encoded)
        return decoded
```
Variational Auto-Encoder

1. Example: a simple VAE

```python
class VAE(nn.Module):
    def __init__(self, image_size=784, h_dim=400, z_dim=20):
        super(VAE, self).__init__()
        self.fc1 = nn.Linear(image_size, h_dim)
        self.fc2 = nn.Linear(h_dim, z_dim)
        self.fc3 = nn.Linear(h_dim, z_dim)
        self.fc4 = nn.Linear(z_dim, h_dim)
        self.fc5 = nn.Linear(h_dim, image_size)

    def encode(self, x):
        h = F.relu(self.fc1(x))
        return self.fc2(h), self.fc3(h)

    def reparameterize(self, mu, log_var):
        std = torch.exp(log_var / 2)
        eps = torch.randn_like(std)
        return mu + eps * std

    def decode(self, z):
        h = F.relu(self.fc4(z))
        return torch.sigmoid(self.fc5(h))

    def forward(self, x):
        mu, log_var = self.encode(x)
        z = self.reparameterize(mu, log_var)
        x_reconst = self.decode(z)
        return x_reconst, mu, log_var
```

2. DIY: implement a conditional VAE for MNIST

```python
def train(model, data_loader, num_epochs):
    for epoch in range(num_epochs):
        for i, (x, _) in enumerate(data_loader):

            # Forward pass
            x = x.to(device).view(-1, image_size)
            x_reconst, mu, log_var = model(x)

            # Compute reconstruction loss and kl divergence
            reconstr_loss = F.binary_cross_entropy(x_reconst, x, reduction='sum')
            kl_div = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())

            # Backprop and optimize
            loss = reconstr_loss + kl_div
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()```
Questions