VARTATIONAL AUTO-ENCODERS

ROADMAP

1. A reminder on auto-encoders
a. Bastics
b. Denoising and sparse encoders

c. Why do we need VAEs ?

2. Understanding variational auto-encoders
a. Key ingredients
b. The reparametrization trich

c. The underlying math

3. Applications and perspectives
a. Disentanglement
b. Adding a discrete condition
c. Applications
d. Comparison with GANs

4, Do it yourself 1in PyTorch
a. Build a basic denoising encoder
b. Build a conditional VAE

AUTO-ENCODERS

ASTC

Encoder
Input
Input
_—
~
7\\ S
Ly /N T~
\ / \ / >~
— = \
\ \
o R o AN A%
— X
\ /
—| / I \ \
/ \ /
— \ — / \ =
/ N K /.
_/ \ [
I L e
/ //)
- —
N J

Encoder

6

Decoder
Code
Output
- 1]
T A
-7 /L /=
PRy / || \ ;L
J/ v N\
\>/ I \(/]
. A N
\ [S VoL
N Ny \\ ||
~ \\ / \
L - A
~ B)
N J

Decoder

Output

Linear vs nonlinear dimensionality reduction

o
.o
..
®/e
¢} o
® o ®
o o o
o) @ [== ®
... o ®
oo ® LY
o
e @

PCA

DENOISING AND SPARSE AUTO-ENCODERS

Denoising

Vector field X — x for a denoising encoder

N
tzviv\!\‘\l\\\O
& T L LA A

8 Sy

\V\\\\A\«\\\\\\\«\\\\\\\‘

’\\\\\\\\

DA o N

M AP
rri\\\\«\\«\«\«\\\\‘.\\\s\

\u\\\\\\\\‘\\.\\\\x«mﬁﬂm
\v‘\\\\\\\dx\\\\\&+\\
Lzt 2/ / \VWWN\\\Cx
s i) A LA \\
LT~ \\«\«\«\\«\\«\«\:\\\
\\\“x,\\\‘\‘\‘\q\\\‘\\“
H«nﬂ\.\\\,/ —~ny Py
LW NI T
SRR RN 428N
K. SEERE RNV DIERRN
AARRUAREEE™. 4NN
AR o LK 2NN
\N_\\\‘.’

Output

Code

Encoder i Decoder m

Original

$ 4 BRSCRNNN

Image

Noisy
Input

2

0

-2

enforces that close inputs

give close outputs

Contractive

enforces specialization of

Sparse
hidden units

2

L (x,x)+ /12 Hanfh) (x)“

LxR)+4), |

WHY DO WE NEED VAE |

VAE’s are used as generative models : sample a latent vector, decode and you
have a new sample

Q : Why can’t we use normal auto-encoders ?
A : If we choose an arbitrary latent vector, we aren’t close to any points 1in
the training set and the reconstruction is garbage !

e

H oOw Can we a VO'i d t h -i S ? Only reconstruction loss Only KL divergence
Compactify the latent space !

Combination

>

Q How can we do this ?

A : Two ingredients

1. Encode 1into balls rather than
points ;
2. Bring the balls closer together

VARTATIONAL

AUTO-ENCODERS

KEY INGREDIENTS

Generative models : unsupervised learning, aim to learn the distribution
underlying the input data

VAEs : Map the complicated data distribution to a simpler distribution
(encoder) we can sample from (Kingma & Welling 2014) to generate -images

Smile: ‘*““““K/n\s“ﬂ*

(decoder)

encoder

Hair color: *f—‘bv/\.—ﬁ
\ 1 0

1 0 1

Skin tone: H—A—»

1 0 1

JAN

1 0 1

Beard: <—¢—¢—/\»
1
Glasses: t /\;

1 0 1

Gender:

1

Latent attributes

decoder

HRST INGREDIENT : ENCODE INTO DISTRIBUTIONS

2
- o(zlz)
e

Skin tone: 0.02

Smile: Gender: -0.18

{ 5 Beard: 0.71 decoder
Skintone: <t f <H
{ i

1

o
A Glasses: -0.19
CLL s 1 .g 1 _Hair color: 0.33
: l: encoder - -
Beard: “— Lo\, (‘Smile: 0.17

1

1 0
Glasses: 4—0—A~0—»

Skin tone: 0.28

') * Gender: -0.11 decoder
Hair color: 4-1491*,. Beard: 0.66

1 o 1
k / Glasses: -0.14

We expect an accurate

reconstruction for any

sample from the latent
state distributions

Hair color: 0.26

Latent distributions Sampled latent attributes

Q : Why encode into distributions rather than deterministic values ?

Al This creates balls in latent space
A2 This ensures that close points in latent space lead to the same
reconstruction. This gives “meaning” to the latent space.

SECOND INGREDIENT - IMPOSE STRUCTURE

Q : How can I bring the balls together to compactify latent space ?
A : Make sure that Q(z|x) for different x’s are close together !

X Q¢

1 \\‘ - a, ean

> ol
}\:»f.;H\»’. » e

D7 &\

e W
0%
LR\ g/

{

X q'}‘:‘v a ‘,‘" . % ance
RN

Xs 4 ‘ } | \
ﬁ a, A a g,

2z~ N(pg(x),04(x))

SECOND INGREDIENT : IMPOSE STRUCTURE

Q : How do we keep the balls Lkr = Esndataset [Dx{Qs(2]7)||p(2)}] ,p ~ N(0,1)

close together ?

A : By adding springs the
balls which pull them towards
the center

Only reconstruction loss Only KL divergence Combination

Q : How ?
A : KL divergence with N(0,1) %
prior ! e

THE REPARAMETRIZATION TRICK

Q :

: Put the random process outside the network !

A

How can we backpropagate when one of the nodes is non-deterministic ?

decoder model decoder model

‘ Deterministic node I
~q(z|x) z=p+0Qe
‘ Random node

/| %
66 oo0-

encoder model encoder model

THE UNDERLYING INFORMATION THEORY

How can we make a latent variable model 7

Choose a nice simple latent distribution P(z), for example P(z) ~ N(0,[4), try to find
its mapping to real space, P(z|z), by maximizing the likelihood of observing the dataset
under this generative process :

L=[F,.plogP(z)=E,.p log/ P(x|z)P(z)dz

To do this, we could parametrize P(x|z) by a neural network and perform gradient
ascent on L. Problem : we can’t calculate the integral in £ for arbitrary P(x|z) ! We
could estimate it with sampling but that would be very inaccurate in high dimension.

THE UNDERLYING INFORMATION THEORY

To do this, we could parametrize P(z|z) by a neural network and perform gradient
ascent on L. Problem : we can’t calculate the integral in £ for arbitrary P(xz|z) | We
could estimate it with sampling but that would be very inaccurate in high dimension.

The idea is to circumvent this by introduce another distribution Q(z) and exploit the
following lower bound, valid for any Q(z) :

L > Eop [Eonglog P(z]2) — BDkL(Q(2)]|P(2))] = ELBO

This time, we have two things to optimize simultaneously : Q(z|z) (the encoder) and
P(z|z) (the decoder) ! Why is this nicer ? Because both terms that appear are tractable

THE UNDERLYING INFORMATION THEORY

L > Eyop [Einglog P(x|2) — BDkr(Q(2)||P(2))] = ELBO

e The first term is called the reconstruction loss. Wait, this is silly because we have
an intractable integral over z again ! Yes, but this time we have freedom to make
Q)(z) dependent on x. Whereas before we had to integrate over the whole latent
space, here we only have to integrate over a small ball containing values likely to
reconstruct x :

Q(z|z) ~ N (u(z), X(x)) (1)

If the ball is small enough we can estimate the average just by sampling one point !

THE UNDERLYING INFORMATION THEORY

L > Eyop [Einglog P(x|2) — BDkr(Q(2)||P(2))] = ELBO

e The second term in called the regularization term. Since both P(z) and Q(z|z) are
tractable we have an easy analytic formula :

DIN (u(=), 5(2)) IV (0, 1g)] = %(tr(E(x)) +(u(x)) " (1(x)) — d — log det(S()))
(2)

THE UNDERLYING INFORMATION THEORY

Proof of lower bound :

Drr(QEIIP(:I2) = 5 Q(:) log Q)

P(z|z)
= log P(x +ZQ log (2) ZQ)log P(x|z)

= log P(z)+PKL((2)||P())V Ewc,zloa‘-ifp(ﬂ z)
ELBO

Esplog P(z) = Eonp [DiL(Q(2)]| P(2]2)) + ELBO]
> ELBO

VAES TN PRACTICE

DISENTANGLEMENT : BETA-VAE

We saw that the objective function is made of a reconstruction and a
regularization part.

L= L. qlog P(x|2) — BDkL(Q(2]2)[|P(2))
By adding a tuning parameter we can control the tradeoff.

If we increase beta:
- The dimensions of the latent representation are more disentangled
- But the reconstruction loss is less good

GENERATING CONDITIONALLY : CVAES

Add a one-hot encoded vector to the latent space and
use it as categorical variable, hoping that it will
encode discrete features in data (digits in MNIST)

Q : The usual reparametrization trick doesn’t work
here, because we need to sample discrete values from
the distribution ! What can we do ?

A : Gumbel-Max trick

Q : How do I balance the regularization terms for the
continuous and discrete parts ?
A : Control the KL divergences independently

(9 ¢) q¢ z,c|x) [IOgPQ(X|Z C)]

=Dk 1(q4(2[x) || p(2)) = C=|=7|Dk (g (c|x) || p(c)) = Cc|

APPLICATION RA0000NTTT

Dupont et al. 2018 AAILIALA .

Image generation

AAAAAAA/

e s e e e e e e B LOB

“‘-‘-“.‘ A A .2

“ i want to talk to you . ”

“ want to be with you . ”

“ do n’t want to be with you .
1 do n’t want to be with you .
she did n’t want to be with him .

»

Text generation : Bowman et al. 2016
he was silent for a long moment .

he was silent for a moment .
it was quiet for a moment .
it was dark and cold .

there was a pause .

it was my turn .

COMPARISON WITH GANS

VAE GAN

Easy metric : reconstruction loss Metric is hard to interpret

Interpretable and disentangled latent space | Low interpretability

Easy to train Tedious hyperparameter searching

Noisy generation Clean generation

TOWARDS A MIX OF THE TwO ?

Adversarial Autoencoder Variational Autoencoder
C * 3
" Prominent attributes: White, Male, Curly
Hair, Frowning, Eyes Open, Pointy Nose,
Query Flash, Posed Photo, Eyeglasses, Narrow Eyes,
0 Teeth Not Visible, Senior, Receding Hairline.
-10
VAE
-10 0 10
z
GAN
encoder decoder/generator
* s REAL / GEN
> >
x discriminator VAE/GAN
} AE |

b GAN {

DO LT YOURSELF

IN PYTORCH

AUTO-ENCODER

1. Example: a simple fully-connected auto-encoder

e RS e ret bt oo class AutoEncoder(nn.Module):
def train_model(model, loss_fn,data_loader=None,epochs=1,optimizer=None): def init (Self, input dim, encoding dlm) .
model.train() S R = ok e
for epoch in range(epochs): super(AutoEncoder, self) ._1n1t__()
for batch_idx, (data, _) in enumerate(train_loader): 581f-enC0der = nn. Linear‘(input_dim, enCOding_dim)
si e il L D self.decoder = nn.Linear(encoding_dim, input_dim)

optimizer.zero_grad()

output = model(data)

loss = loss_fn(output, data)

loss.backward() def

forward(self, x):

szl s encoded = F.relu(self.encoder(x))
if batch_idx % 50 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(decoded = Self.decoder‘(encoded)
epoch, batch_idx * len(data), len(data_loader.dataset),
100. * batch_idx / len(data_loader), loss.data.item())) return decoded

2. DIY: implement a denoising convolutional auto-encoder for MNIST

class VAE(nn.Module):
def __init_ (self, image_size=784, h_dim=400, z_dim=20):

super(VAE, self).__init_ ()
- self.fcl = nn.Linear(image_size, h_dim)
self.fc2 = nn.Linear(h_dim, z_dim)

self.fc3 = nn.Linear(h_dim, z_dim)

self.fc4 = nn.Linear(z_dim, h_dim)

self.fc5 nn.Linear(h_dim, image_size)
1. Example: a simple VAE deT encodelserr,: x):

h = F.relu(self.fcl(x))

def train(model, data_loader=data_loader,num_epochs=num_epochs): return self.fc2(h), self.fc3(h)

for epoch in range(num_epochs):

for i, (x, _) in enumerate(data_loader): def reparameterize(self, mu, log_var):
std = torch.exp(log_var/2)
Forward pass eps = torch.randn_like(std)
x = x.to(device).view(-1, image_size) return mu + eps *x std

x_reconst, mu, log_var = model(x)
def decode(self, z):

feggﬁgztiogicgn;tggﬁgisncigzz Zggr§;y7iviggzggi x, reduction="'sum') s nerelsel e (2]

kl_div = - 0.5 % torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) return. torch.sigmoid(selt. fc5(hi)

Backprop and optimize def forward(self, x):

loss = reconst_loss + kl_div mu, log_var = self.encode(x)
optimizer.zero_grad() z = self.reparameterize(mu, log_var)
loss.backward() x_reconst = self.decode(z)
optimizer.step() return x_reconst, mu, log_var

2. DIY: implement a conditional VAE for MNIST

QUESTIONS

